Mykurs.world Слив платных курсов.

Нетология [Нетология] Язык R для аналитики (2020)

Sermun

Модератор
Модератор
Status
Offline
Сообщения
12,885
Реакции
35,256
Баллы
113
netologija-jazyk-r-dlja-analitiki-2020.png

[Нетология] Язык R для аналитики (2020)

Программа обучения:

Содержание Модуль 1 - Базовые принципы программирования на R

Рассмотрим базовые возможности языка R, научимся настраивать R-Studio и начнём использовать для простых операций.
1. R и R-Studio
2. Переменные их типы
3. Объявление переменных в R
4. Арифметические операции
5. Логические переменные и операции
6. Ветвление
7. Циклы

Содержание Модуль 2 - Отличия R от традиционного программирования
Познакомимся с векторами и техниками программирования в R.
1. Понятие вектора, векторные операции
2. Использование функций
3. Обзор основных функций и пакетов R

Содержание Модуль 3 - Работа с наборами данных
Научимся импортировать данные в R, познакомимся с фреймами данных, освоим базовые операции (просмотр, обращение к данным, преобразование, соединение, фильтрация).
1. DataFrame — что это и для чего
2. Импорт DataFrame в R
3. Простейшее исследование DataFrame
4. Доступ к переменным DataFrame (знак $)
5. Базовые операции с DataFrame
6. Фильтрация DataFrame

Содержание Модуль 4 - Визуализация в R
Познакомимся со способами визуализации данных в R, научимся применять визуализацию в зависимости от данных, интерпретировать графики. Научимся оценивать распределение, описательные статистики для двух и более переменных, узнаем о корреляции и регрессии.
1. Основы визуализации в R
2. Построение гистограмм — функция hist
3. Построение boxplot
4. Построение графиков зависимостей двух переменных

Содержание Модуль 5 - Продвинутая визуализация в R
Познакомимся с продвинутыми способами визуализации данных в R, научимся работать со сложными наборами данных и интерпретировать их.
1. Базовый шаблон ggplot
2. Геометрические типы и преобразования
3. Управление графическими параметрами
4. Группировка данных
5. Системы координат
6. Оси, легенды, подписи
7. Разделение графиков по фасетам
8. Интерактивная визуализация в Shiny

Содержание Модуль 6 - Исследовательский анализ данных в R
Научимся подготавливать данные к дальнейшей работе, анализу структуры, классификации без обучения (кластерный анализ).
1. Стандартизация данных
2. Иерархическая кластеризация
3. Метод k-средних (kmeans)
4. Основы мультивариативного анализа в R

Содержание Модуль 7 - Основы прогнозирования в R
Узнаем про основные модели прогнозирования, познакомимся с линейной регрессией и научимся её построению, оценке и использованию.
1. Модели прогнозирования
2. Линейная регрессия
3. Построение модели линейной регрессии в R
4. Оценка модели линейной регрессии и её использование

Содержание Модуль 8 - Создание и использование моделей в R
Узнаем больше о различных моделях прогнозирования и их использовании в полевых условиях, научимся их строить и валидировать. Познакомимся с работой с предсказанием категории и с несбалансированными данными.
  1. Логистическая регрессия
  2. Основные модели, основанные на деревьях решений
  3. Валидация модели
  4. Дилемма смещения-дисперсии
  5. Работа с предсказанием категории
  6. Работа с несбалансированными данными
  7. Имплементация модели в работу компании
Подробнее:

Скачать материал:
 
Сверху